It's electrifying! - Stage 3

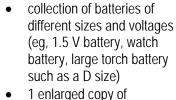
Physical World Strand

Term	1	2	3	4	Weeks	1	2	3	4	5	6	7	8	9	10	11

Outcome	Lesson Sequence – Overview	Resources	Word Wall
stransformed from one form to another identify evidence that shows that a battery is working explain their existing ideas of how a battery works describe how they think a battery-operated device works explain their existing ideas of how a torch works explain their existing ideas of how a torch works explain what they know about how electric circuits work. scientific investigations to answer testable questions, and collects and summarises data to communicate conclusions record information and ideas about battery-operated devices represent what they think they know about how a torch	Lesson 1 What makes it go? – Lesson focus p 13 • To capture students' interest and find out what they think they know about how electrical circuits provide a means of transferring and transforming electrical energy. • To elicit students' questions about how electric circuits work. Students: • observe and record information about the working of different battery-operated devices • draw a cutaway diagram of how they think a torch works • share and discuss observations.	 class science journal class science chat-board team roles chart team skills chart 3 or 4 torches collection of battery-operated devices (eg, toy, music player, doorbell, handheld computer game, mobile phone, walkie-talkies, megaphone) large sheets of paper for class science chat-board (see 'Preparation') For each team role wristbands or badges for Director, Manager and Speaker each team member's science journal 	amps battery bulb charge chemical circuit contact cords current device diagram electrical electrode electrons

works in a cutaway diagram contribute to the class science chatboard to represent their understanding of how electric circuits work, including further questions to investigate. ST3-8PW-ST explains how energy is transformed from one form to another make predictions about circuits that will light a light bulb construct and test circuits and record their observations compare their	Lesson 2 Light up my life – Lesson focus p20 To provide students with hands-on, shared experiences of constructing and representing electric circuits. Students: construct and test circuits represent a functioning circuit.	For the class class science journal class science chat-board team roles chart team skills chart 1 enlarged copy of 'PROE record: Lighting up my life' (Resource sheet 1) stripping pliers or knife spare light bulbs and batteries	energy equipment explanation fair test filament flow heat insulation investigation journal
representations of circuits. ST3-1WS-S plans and conducts scientific investigations to answer testable questions, and collects and summarises data to communicate conclusions record predictions, observations and explanations about circuits use writing, drawing and modelling to clarify ideas about designs of circuits	Mawang Yalbilit	 For each team role wristbands or badges for Director, Manager and Speaker each team member's science journal 1 copy of 'PROE record: Lighting up my life' (Resource sheet 1) per team member 1 battery (size C or D) 1 light bulb (1.5 V) 2 pieces of insulated wire (15 cm long), with ends stripped of insulation; or folded foil wires', 	metal motor negative observation path plugs positive power

represent a circuit diagram using circuit symbols. ST3-8PW-ST explains how energy is transformed from one form to another describe the structure of a light bulb label the parts of a light bulb explain the function of each part of a light bulb. ST3-1WS-S plans and conducts scientific investigations to answer testable questions, and collects and summarises data to communicate conclusions create a labelled diagram of a light bulb interpret a factual text about light bulbs use oral language to represent scientific ideas about electrical energy contribute to the construction of a class diagram of how a light bulb works. ST3-1WS-S	Lesson 3 Light bulb explorers- Lesson focus p 32 • To provide students with hands-on, shared experiences of the structure of a light bulb. Students: • draw a light bulb from memory • draw a light bulb from observation • read about and complete a labelled diagram of a light bulb. Mawang Yalbilii Lesson 4	Resource sheet 2 and 'Preparation') • optional: 1 copy of 'Folded foil wires' (Resource sheet 2) For the class • class science journal • class science chat-board • team roles chart • team skills chart • optional: collection of light bulbs of different sizes and shapes • 1 enlarged copy of 'Inside a light bulb' (Resource sheet 3) • dictionaries (eg, hardcopy or online) For each team • role wristbands or badges for Director, Manager and Speaker • each team member's science journal • 1 light bulb (eg, 1.5 V bulb) • 1 magnifying glass or hand lens • 1 copy of 'Inside a light bulb' (Resource sheet 3) for each team member	resistance science switch symbols terminal transform tungsten Volta voltage wire
plans and conducts scientific investigations to answer testable	Alessandro Volta: Battery maker – Lesson focus p39	class science journal	
questions, and collects		class science chat-board	


and summarises data to communicate conclusions

- identify some ways that scientists think and work
- understand that scientific explanations develop historically through the contribution of ideas from many scientists
- understand that scientific explanations are revised as new evidence emerges.
- discuss how scientific knowledge develops

• To provide students with hands-on, shared experiences of exploring the role of Alessandro Volta in the development of the first battery.

Students:

- read and discuss a biography of Alessandro Volta
- discuss the way scientists develop and change their ideas
- represent their ideas about the biography.

 1 enlarged copy of 'Alessandro Volta: Battery maker' (Resource sheet 4)

For each student

- science journal
- 1 copy of 'Alessandro Volta: Battery maker' (Resource sheet 4)
- optional: 1 copy of 'Chronological list: Alessandro Volta' (Resource sheet 5)

ST3-8PW-ST explains how energy is transformed from one form to another

- describe the components of a complete circuit
- identify the source of electrical energy in a circuit
- explain the role of electrons in carrying electrical energy around a circuit
- explain that electrical energy is changed into light energy by the bulb.

ST3-1WS-S plans and conducts scientific investigations

Lesson 5 Enacting electrons – Lesson focus p49

 To support students to represent and explain their understanding of electric circuits, and to introduce current scientific views.

Students:

- participate in a whole-class role-play of an electric circuit
- discuss the role of the components of an electric circuit
- represent their understanding using a circuit diagram.

For the class

- Mawang Yalbilinya class science journal
 - class science chat-board
 - 1 decorated container (eg, a bucket decorated with tinsel, cellophane or crepe paper) for the 'bulb'
 - 50–60 (twice as many as the number of students) packets of energy (eq. pegs, counters)

For each student

science journal

 provide evidence to support their description.

ST3-1WS-S
plans and conducts
scientific investigations
to answer testable
questions, and collects
and summarises data to
communicate
conclusions

- plan, conduct and represent a fair test to decide if materials are conductors or insulators
- summarise their findings about materials investigated
- participate in cooperative learning teams and class discussion.

- 1 copy of 'Lab notes: What's this all about?' (Resource sheet 6)
- 1 copy of 'Problem solvers: Investigation planner' (Resource sheet 7) per team member

'Essentials for the investigation':

- 1 battery (size C or D)
- 1 light bulb (1.5 V)
- 2 pieces of insulated wire (15 cm long), with ends stripped of insulation; or folded foil wires (see 'Folded foil wires', Resource sheet 2 and 'Preparation')
- self-adhesive tape
- 1 clothes peg
- 1 piece A4 card

1 'Scientists' materials box' containing:

- wood (eg, popsticks, toothpicks)
- plastic (eg, straws, plastic cutlery)
- rubber (eg, balloons, rubber bands)
- metal (eg, paperclips, cutlery)
- paper and/or cardboard
- pencils (sharpened at both ends)
- gardening wire or twist-ties
- insulated copper wire with the ends stripped

ST3-8PW-ST explains how energy is transformed from one form to another

- construct two types of electrical switch
- explain how switches are used to control the flow of electrical energy around a circuit.

ST3-1WS-S plans and conducts scientific investigations to answer testable questions, and collects and summarises data to communicate conclusions

- interpret a procedural text to construct two types of electrical switch
- represent their understanding of how switches control the flow of electrical energy in a circuit using a circuit diagram
- develop scientific vocabulary about switches.

Lesson 7

Switched on - Lesson focus p66

• To support students to plan and conduct an investigation of the function of switches in an electric circuit.

Students:

- discuss the role of switches in an electric circuit
- create a circuit diagram including the switch symbol.

For the class

- class science journal
- class science chat-board
- 1 enlarged copy of 'Making switches' (Resource sheet 8)
- collection of battery-operated devices from Lesson 1
- team roles chart
- team skills chart

For each team

- role wristbands or badges for Director, Manager and Speaker
- each team member's science journal
- 1 copy of 'Making switches' (Resource sheet 8)
- 1 battery (1.5 V)
- 1 light bulb (1.5 V)
- optional: light bulb holder and battery holder
- optional: a small electric buzzer or motor for the bulb
- 3 pieces of insulated wire (15 cm long), with ends stripped of insulation; or folded foil wires (see 'Folded foil wires', Resource sheet 2 and 'Preparation')

Electrical switch 1

- 1 piece of A4 card
- 1 metal paperclip
- 2 metal split pins or thumbtacks
- self-adhesive tape

Electrical switch 2 • 3 corrugated-card squares (10 cm x 10 cm) aluminium foil A4 sheet ST3-8PW-ST For the class Lesson 8 explains how energy is class science journal Bright sparks: Sharing what we know transformed from one class science chat-board form to another To provide opportunities for students to represent what they know about how electrical team roles chart describe a circuit in circuits provide a means of transferring and transforming electrical energy, and to reflect on team skills chart terms of components their learning during the unit. 'It's electrifying Word loop that form a continuous path for cards' (Resource sheet 9) the flow of electrons 1 large sheet of paper for Students: describe how energy affinity diagram is transferred within participate in a word loop activity an electric circuit work in collaborative learning teams to prepare a model of a torch For each team explain the prepare a description that communicates the main ideas of their model and how an electric role wristbands or badges for characteristics of circuit works Mawang taibiiliny Director, Manager and conductors and share models and descriptions with an audience insulators in terms of Speaker reflect on their learning during the unit. categories of each team member's science materials. journal ST3-1WS-S optional: 1 copy of 'Torch plans and conducts template' (Resource sheet 10) scientific investigations 1 battery (1.5 V) to answer testable 1 bulb (1.5 V) questions, and collects and summarises data to optional: 1 sheet of communicate cellophane conclusions optional: light bulb holder and make a labelled battery holder model to represent • 3 pieces of insulated wire (15 how an electric cm long), with ends stripped circuit works of insulation; or folded foil make a presentation wires (see 'Folded foil wires', to communicate their

understanding of electric circuits use a checklist to reflect on their learning in the unit list, group and label ideas about their learning in the unit.	Resource sheet 2 and 'Preparation') 1 metal paperclip 2 metal split pins or thumbtacks self-adhesive tape materials for circuit description (see Lesson step 2) 1 copy of 'Bright sparks: Reflecting on my learning' (Resource sheet 11) per team member several self-adhesive notes per team member
	RIVERINA EEC Mawang Yalbilinya