Stage 2

Friends or Foes?

**Updated 2018 to reflect new K-6 Science and Technology Syllabus outcomes

Friends or Foes?-Stage 2

BIG IDEAS:

- Living things undergo a series of changes in form, returning to the starting state. This is a LIFE CYCLE.
- Living things depend on each other and the environment to survive.
- Living things have basic needs.
- We can observe and describe changes in a simple system.
- From data collected, we can perform simple measurements and comparisons.

Cross Curricular Outcomes - ENGLISH

EN2-1A communicates in a range of informal and formal contexts by adopting a range of roles in group, classroom, schoo and community contexts

- interpret ideas and information in spoken texts and listen for key points in order to carry out tasks and use information to share and extend ideas and information
- understand that social interactions influence the way people engage with ideas and respond to others for example when exploring and clarifying the ideas of others, summarising their own views and reporting them to a larger

- interact effectively in groups or pairs, adopting a range of roles 新
- use information to support and elaborate on a point of view
- demonstrate understanding of ideas and issues in texts through dramatic representation, role-play and simulations

EN2-6B identifies the effect of purpose and audience on spoken texts, distinguishes between different forms of English and

 identifies organisational patterns and features- understand the use of vocabulary in discussing and presenting spoken texts in familiar and unfamiliar contexts
- listen to and contribute to conversations and discussions to share information and ideas and negotiate in collaborative situations

EN2-7B identifies and uses language forms and features in their own writing appropriate to a range of purposes, audiences and contexts

- understand how a range of language features can shape readers' and viewers' understanding of subject matter
- understand how audience and purpose influence the choice of vocabulary
- make constructive statements that agree/disagree with an issue SIJhiti

EN2-8B identifies and compares different kinds of texts when reading and viewing and shows an understanding of purpose, audience and subject matter

- understand how texts vary in complexity and technicality depending on the approach to the topic, the purpose and the intended audience
- identify and interpret the different forms of visual information, including maps, tables, charts,

diagrams, animations and images

EN2－10C thinks imaginatively，creatively and interpretively about information，ideas and texts when responding to and composing texts
－use visual representations，including those digitally produced，to represent ideas，experience and information for different purposes and audiences 涭解
－respond to a range of texts，eg through role－play or drama，for pleasure and enjoyment，and express thoughtful conclusions about those texts 萿？

EN2－11D responds to and composes a range of texts that express viewpoints of the world similar to and different from their own
－respond to and appreciate how Dreaming stories form part of an oral tradition for Aboriginal and Torres Strait Islander peoples
－describe and discuss ethical issues encountered in texts $8 \mathbb{I S}_{\substack{\text { sis }}}$
EN2－12E recognises and uses an increasing range of strategies to reflect on their own and others＇learning
－discuss the roles and responsibilities when working as a member of a group and understand the benefits of working collaboratively with peers to achieve a goal 新整

Friends or Foes？－Stage 2

BIG IDEAS：

－Living things undergo a series of changes in form，returning to the starting state．This is a LIFE CYCLE．
－Living things depend on each other and the environment to survive．
－Living things have basic needs．
－We can observe and describe changes in a simple system．
－From data collected，we can perform simple measurements and comparisons．

Cross Curricular Outcomes－MATHEMATICS

MA2－1WM uses appropriate terminology to describe，and symbols to represent，mathematical ideas

－uses appropriate terminology to describe，and symbols to represent，mathematical ideas

MA2－2WM selects and uses appropriate mental or written strategies，or technology，to solve problems
－choose and apply efficient strategies for addition and subtraction（Problem Solving）
MA2－3WM checks the accuracy of a statement and explains the reasoning used
－give a reasonable estimate for a problem，explain how the estimate was obtained，and check the solution （Communicating，Reasoning）萿家

MA2－5NA uses mental and written strategies for addition and subtraction involving two－，three－，four－and five－digit numbers

－select，use and record a variety of mental strategies to solve addition and subtraction problems，including word problems， with numbers of up to four digits 期察
MA2－13MG reads and records time in one－minute intervals and converts between hours，minutes and seconds
－solve simple time problems using appropriate strategies，eg calculate the time spent on particular activities during the school day 薃察
－explore and use the various date input and output options of digital technologies（Communicating）믄
MA2－18SP selects appropriate methods to collect data，and constructs，compares，interprets and evaluates data displays， including tables，picture graphs and column graphs
－Identify questions or issues for categorical variables；identify data sources and plan methods of data collection and recording
－recognise that data can be collected either by the user or by others
－identify possible sources of data collected by others，eg newspapers，government data－collection agencies，sporting

－pose questions about a matter of interest to obtain information that can be recorded in categories
－predict and create a list of categories for efficient data collection in relation to a matter of interest，eg＇Which breakfast cereal is the most popular with members of our class？＇
－identify issues for data collection and refine investigations，eg＇What if some members of our class don＇t eat cereal？＇ （Problem Solving）察
－Collect data，organise it into categories，and create displays using lists，tables，picture graphs and simple column graphs，with and without the use of digital technologies
－collect data and create a list or table to organise the data，eg collect data on the number of each colour of lollies in a packet

－use computer software to create a table to organise collected data，eg a spread sheet（Communicating）\square
－construct vertical and horizontal column graphs and picture graphs that represent data using one－to－one correspondence
－use grid paper to assist in constructing graphs that represent data using one－to－one correspondence （Communicating）
－use the terms＇horizontal axis＇，＇vertical axis＇and＇axes＇appropriately when referring to column graphs （Communicating）
－use graphing software to enter data and create column graphs that represent data（Communicating）믄
－mark equal spaces on axes，name and label axes，and choose appropriate titles for column graphs （Communicating）
－describe and interpret information presented in simple tables，column graphs and picture graphs

- make conclusions about data presented in different data displays, eg 'Football is the most popular sport for students in Year 3 at our school' (Communicating, Reasoning)
- represent the same data set using more than one type of display and compare the displays
- discuss the advantages and/or disadvantages of different representations of the same data (Communicating, Reasoning) 富客
- create a survey and related recording sheet, considering the appropriate organisation of categories for data collection
- discuss and decide the most suitable question to investigate a particular matter of interest, eg by narrowing the focus of a question from 'What is the most popular playground game?' to 'What is the most popular playground game among Year 3 students at our school?' (Communicating, Reasoning) Wive
- Construct suitable data displays, with and without the use of digital technologies, from given or collected data; include tables, column graphs and picture graphs where one picture can represent many data values
- represent given or collected categorical data in tables, column graphs and picture graphs, using a scale of many-toone correspondence, with and without the use of digital technologies
- discuss and determine a suitable scale of many-to-one correspondence to draw graphs for large data sets and state the key used, eg $\because=10$ people, if there are 200 data values (Communicating, Reasoning)
- use grid paper to assist in drawing graphs that represent data using a scale of many-to-one correspondence (Communicating)
- use data in a spreadsheet to create column graphs with appropriately labelled axes (Communicating, Problem Solving)
- mark equal spaces on axes, name and label axes, and choose appropriate titles for graphs (Communicating)
- identify and discuss misleading representations of data (Communicating, Reasoning) Hive hin sta
- discuss the advantages and disadvantages of different representations of the same categorical data, eg column graphs compared to picture graphs that represent data using scales of many-to-one correspondence

MAS-19SP describes and compares chance events in social and experimental contexts

- use the terms 'equally likely', 'likely' and 'unlikely' to describe the chance of everyday events occurring, eg 'It is equally likely that you will get an odd or an even number when you roll a die'
- keep a tally and graph the results of a chance experiment (Communicating)
- compare the chance of familiar events occurring and describe the events as being 'more likely' or 'less likely' to occur than each other

Friends or Foes?-Stage 2

- Living things undergo a series of changes in form, returning to the starting state. This is a LIFE CYCLE.
- Living things depend on each other and the environment to survive.
- Living things have basic needs.
- We can observe and describe changes in a simple system.
- From data collected, we can perform simple measurements and comparisons.

Cross-Curricular Outcomes - SCIENCE AND TECHNOLOGY

ST2-1WS-S questions, plans and conducts scientific investigations, collects and summarises data and communicates using scientific representations

- use a range of methods to represent data, including tables and column graphs
- identify patterns and trends in gathered data
- compare results with predictions
- suggest possible reasons for findings
- represent and communicate observations, ideas and findings, using formal and informal representations
- produce labelled and annotated drawings including digital graphic representations
- identify that science involves making predictions and describing patterns and relationshipsSciTw

ST2-11DI-T describes how digital systems represent and transmit data

- recognise that numbers, text, images, sounds, animations and videos are all forms of data when stored or viewed using a digital system ComTSysT wipl
- collect, access and present data, using software to present and communicate information and solve problems

ST2-4LW-S compares features and characteristics of living and non-living things

- identify that living things have life cycles 4 -믈
- conduct an investigation into the life cycle of plants and/or animals SCIT sTr 믕 깽
- describe how living things depend on each other and the environment to survive, for example: SyST a--bees and flowers
-birds eat and disperse seeds

	\checkmark \checkmark	\checkmark	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$ \checkmark	\checkmark $\begin{aligned} & v \\ & v \\ & v \end{aligned}$ \checkmark \checkmark \checkmark \checkmark
	\checkmark \checkmark					\checkmark \checkmark
$\begin{aligned} & \checkmark \\ & \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	\checkmark	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	

Friends or Foes? Stage 2

BIG IDEAS:

- Living things undergo a series of changes in form, returning to the starting state. This is a LIFE CYCLE.
- Living things depend on each other and the environment to survive.
- Living things have basic needs.
- We can observe and describe changes in a simple system.
- From data collected, we can perform simple measurements and comparisons.

Cross-Curricular Outcomes - Geography

GE2-1 Examines features and characteristics of places and environments

- explanation of the importance of natural vegetation to animals and the functioning of the environment eg provision of habitats, production of oxygen
- examination of how the practices of Aboriginal and Torres Strait Islander Peoples support the sustainable use of environments eg use of resources

GE2-2 describes the ways people, places and environments interact

- discussion of how people's perceptions influence the protection of places in Australia eg sacred sites, national parks, world heritage sites $4=1-4$

Cross Curricular Outcomes - Creative and Practical Art

DRA S2.1 Takes on and sustains roles in a variety of drama forms to express meaning in a range of imagined situations

- interpret the meaning of their own drama and that of others
- interprets a dramatic context by responding in drama form, eg improvisation and movement

DRAS2.4 Responds to and interprets drama experiences and performances

- engages in role to communicate meaning to an audience and engages as a respectful and appreciative audience member

| | | | \checkmark | \checkmark | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | \checkmark | \checkmark | | |
| | | | | | | |
| | | | | \checkmark | | |

Study Risk Management Form: Friends or Foes?

Note: Risk management for the excursion is the responsibility of the visiting teachers and school. This form is just for the activities and site.

Description: Located at REEC. Students explore the grounds of the Centre. The major activities are: Nature walk and specimen collection, dip netting, using microscopes to observe physical features of plants and animals.

Risk Assessment Matrix	How likely is it to be serious			
How serious could the injury be?	Very likely	Likely	Unlikely	Very unlikely
Death or permanent disability	1	1	2	3
Long term illness or serious injury	1	2	3	4
Medical attention and several days	2	3	4	5
First aid needed	3	4	5	6

Task/Activity	Hazard	Risk Assess	Elimination or Control Measure
General	General	Senior First Aid qualifications are held by REEC Staff and a First Aid Kit with EpiPen, water and mobile phone is carried with REEC Staff.	
Environment	Possible cold weather Sun Walking over rough ground Possible snake presence Insect bites/stings	5	Students must wear appropriate clothing. If weather judged too severe an alternative activity will be done or the Study postponed. Students must wear hat and apply sun screen. Water available. Teacher at front and back of group. Teacher ratio <1:15 (guideline). Students wear enclosed footwear. Students warned of possible snake presence. Students made aware of areas where bees, ants may be found. Teacher informed of students who may suffer anaphylactic reactions from bites/stings. REEC staff to carry first aid kit, EpiPen and mobile phone. REEC closed during catastrophic fire rating period. Student induction in regards to evacuation procedures at the beginning of the program.
People	Bushfire	1	1
iOrienteering course	Allergic reactions (anaphylaxis) - Insect stings or environmental triggers, asthma, diabetes	1	Schools give prior advice to REEC staff of student and staff medical conditions. REEC staff to carry First Aid kit with Ventolin/spacer, EpiPen and mobile phone. Student and/or teachers carry personal medication. Students with anaphylactic reactions to bring EpiPen and Personal Health Care Plan.

Friends or Foes?

BIG IDEA:

- Living things undergo a series of changes in form, returning to the starting state. This is a LIFE CYCLE.
- Living things depend on each other and the environment to survive.
- Living things have basic needs.
- We can observe and describe changes in a simple system.
- From data collected, we can perform simple measurements and comparisons.

Suggested Learning Experiences	Suggested Website Links for Learning	Language focus	Suggested Teacher Resources

1. What is a living thing?

Pose this question and write each response on a KWL chart (under
heading 'What we KNOW') and let students know that we will check these facts as the unit progresses. (for example of KWL chart, see link) http://www.nea.org/tools/k-w-l-know-want-to-knowlearned.html
Under heading 'What we $\mathbf{W}_{\text {ANT }}$ to know', post student questions they might have that have not been explored yet. Some examples might be: - What do living things need to survive? What do all living things do? Can extinct species be bought back to life? What is the difference between 'dead' and 'non-living?'

The last column of the KWL Chart is headed 'What we Learned'. This section of the chart is left blank, and each time students recognise they have learned a something new, they are able to have it recorded on the poster.

2. Classification activity.

Create two columns on a smart notebook file or piece of cardboard. Label the first column as 'Living' and the second as 'non-living'. Using a workbook or scrap paper, have students think of as many things as they can for 'living' and 'non-living'. Give 3minutes to scribe ideas and then collate some of these onto notebook file or cardboard. Generate the following questions to ponder: How did you know that these things were living or not? What determines a living thing? Refer back to original ideas on KWL chart Have students revised their ideas? Watch the following science

National Education Association - KWL

 Charthttp://www.nea.org/tools/k-w-l-know-want-to-know-learned.htm

BBC Curriculum Bites

Google clips that can be watched on YouTube - they are currently unavailable to be watched outside the UK via their site.

Mrs Gren - 7 Life Processe

https://www.youtube.com/watch?v=q8 q3KecirZw

Bill Nighy the Science Guy - Life Cycles

https://www.youtube.com/watch?v=ZO 2qZF1WB3Y

Living and Nonliving things for Kids

https://www.youtube.com/watch?v=b WBrusrCmX4

Twinkl -(NB this is a paid subscription site, however registration is free nad

PLANT FOCUS WORDS - reproduction, pollen, pollination, cross-pollination, fertilisation, germination, seed, seedling, fruit, flower, flowering, ripen, grow, petal, anther, stigma, filament, ovule, style, ovary, stem, cross-section, internal parts, nectar, scent, seed dispersal, wind, water, animal transport, bursting, digestion,

ANIMAL FOCUS WORDS - mutually beneficial relationships, cooperative, symbiosis, predators, prey, insect, head, thorax, abdomen, wing, stinger, pollen sac, antennae, proboscis, decomposers,

GENERAL WORDS - biology, biotic, abiotic, ecosystems, food chain, food web, life cycle, sequence, metamorphosis, competition, environment, habitat, attract, needs, oxygen, water, movement, investigation, data, tally, analyse, preferences, evaluate, fair test, variables, behaviour, observation, microscopes, measure, native, introduced, interactions, dependent, evidence, graphing, communicating, collaborating, r-selected, K-selected,

Primary Connections - 'Friends or Foes?' Australian Academy of Science 2013

Primary Connections - 'Plants in Action' Australian Academy of Science 2012

Primary Connections - 'Among the Gum Trees' Australian Academy of Science 2015

Great Picture Books to use in this unit:

documentary on YouTube

https://www.youtube.com/watch?v=Q2HDJP10qSQ The Seven Characteristics of Life - Mrs Gren/Mrs Nerg - BBC Curriculum Bites. Discuss each of the 7 life processes at greater length/detail, using the mnemonic 'Mrs Nerg' (alternately Mrs Gren) to help students recall each one.

Movement
 Reproduction Sensitivity
 Nutrition
 Excretion
 Respiration Growth

Another video that explores these life processes in more detail, and at an appropriate language level, can be found at
https://www.youtube.com/watch?v=q8q3KecirZw 'Mrs Gren' by Benjamin Himme.

Students can scribe each of these 7 life processes onto their own poster visual, including a picture of Mrs NERG/ GREN.

Visual example found http://www.twinkl.co.uk/resource/t2-s-001-mrs-gren-life-processes-display-poster

3. Create a new word wall.

Words that are specific to this unit should be added to a 'Word Wall' in the room. Students will need t o refer to the correct terminolgy as it is modelled, and use words appropriately in their speech and writing activities. See the 'Language focus' column of this unit.
some 'non-premium' documents can be downloaded for free. Search 'Life processes' for great visual resources. www.twinkl.co.uk

Focus on a Cycle - .pdf activity sheet

https://www.scholastic.com/content/da m/teachers/blogs/genia-
connell/migrated-
files/focus_on_a_cycle.pdf

Life Cycle of a Flowering Plant - .pdf

 activity sheethttps://www.scholastic.com/content/da m/teachers/blogs/genia-
connell/migrated-
files/0545223776_e005.pdf

10 Ready to Go Resources for Teaching Life Cycles

https://www.scholastic.com/teachers/bl og-posts/genia-connell/10-ready-go-
resources-teaching-life-cycles/

Science Anchor Charts

https://diaryofanurbanteacher.files.wor dpress.com/2014/04/abiotic-and biotic.jpeg

Parts of a Flower and Pollination - Mr

Binocs Show

https://www.youtube.com/watch?v=djP Vgip_bdU
biodiversity, native, feral, introduced species, pests, producers, consumers, decomposers

Linda Glaser - 'Not a Buzz to be Found, Insects in Winter'

Pam Skadins - The Cassowary's

4. What is a life cycle? Why is it called a cycle?

 Add these questions to the KWL chart. Record responses in theKNOW column. Watch the following video 'Bill Nighy the Science Guy - Episode Life Cycles' and stop at critical parts that may need clarification or where questions are asked. At the end of the video, add any new facts learned to the LEARNED coloumn on the KWL chart. https://www.youtube.com/watch?v=ZO2qZF1WB3Y
5. Changing the language - Modelling appropriate terminology The following infographic is a great example of how we can change simpler terms already introduced, to more appropriate scientific terminology. From this poster, can students work out the meanings of the following words from the context?

- Ecosystem (new word -used to assist interpretation of other words)
Organism - (living thing)
- Biotic - (living parts - link 'bio' = life eg, biology is the study of life)
Abiotic - (non-living parts ' a '=anti/ opposite = 'no life')
- Producers - Living things that make their own food = plants
- Consumers - Organisms that rely on other organisms for food. Can introduce 'herbivore'/'omnivore'/'carnivore' and ask students to give examples of organisms who 'fit' eat category.
$\|$ An ecosystem is made up of a
https://diaryofanurbanteacher.files.wordpress.com/2014/04/abioti c-and-biotic.jpeg

The Magic School Bus Gets Ants in its

Pants - Cartoon

https://www.youtube.com/watch?v=jck am3p-gog
Based on the Scholastic Book Series.

Australian Geographic Unlikely Friendships in Nature

Alex Woolf - You Wouldn't Want to Live Without Bees!

Joanna Cole - The Magic School Bus Gets Ants in its Pants

6. Tomato Troubles (Primary Connections - Lesson 1)

Look at lesson 1- 'Friends or Foes?' - Primary Connections to begin a class 'Science Journal' and 'science chat-board' display area. (See p12 for more details.) Begin activities in Lesson 1 - 'Tomato Troubles' (pages 10-15). Students will read a letter and discuss the needs of a tomato plant to produce fruit, create the life cycle of a tomato plant and include ideas about each stage and contribute to the science chat-board about the growth of a tomato plant.

7. Parts of a Flower and the Pollination Process

Session 1 'Pollinating Parts' (pp 18-21 -'Friends of Foes?' Primary Connections) will cover the preparation and lesson steps for this next learning activity. Ask students about any prior knowledge they may have in relation to the parts of a flower. Write any perceived knowledge or terminology known about the internal parts of a flower on the KWL chart.

Watch 'Parts of a Flower and Pollination - Mr Binocs Show' at the following link. https://www.youtube.com/watch?v=djPVgip_bdU

Explain to students that you have collected some flowers and cut through them longways to observe a cross section of a flower.

Using magnifying glasses and tweezers, observe parts of a flower. Using photocopiable diagram on p21, review the cross sections and labels to matching flower parts. Correct work sample is located on p19.

Stage Two- Friends of Foes?
 Riverina Environmental Education Centre

In this introductory session, students will participate in an induction to the study. Inquiry questions will be posed, and students recall facts learned from their 'pre-visit' activities at school.

Inquiry questions given to provide a focus for the day's investigation:
$>$ What are the features of all living things?
$>$ What is a life cycle? Are all life cycles the same?
$>$ What does a plant life cycle look like?
$>$ How do plants create new plants?
$>$ Where do the seeds come from?
$>$ How can seeds be dispersed?
$>$ What beneficial relationships exist between plants and animals?
$>$ What is a food chain?
$>$ Observe a large ant nest. Watch one ant for a duration of thirty seconds. How far did it travel? What was it doing? What would the system underground look like?
$>$ Observe some diagrams that show what is happening in each section of the ant nest. Listen to the stories of the differing roles of each of the colony - Queen, Princess, Soldier, Drone, Worker. Listen to Aunty Joycelan's perspective as a Wiradjuri woman, and her connection with the ants. Discussion - honey ants eaten by Aboriginal people are returned to the land.
$>$ Students will conduct an experiment over several areas of the site. An index card will be used to create 'food cards'. Three of these will be constructed, and will eventually be placed at different locations around the site - on concrete, on grassed area and on bare ground. Number each card 1, 2 or 3 so it is easier to refer to each when comparing results at the end of the experiment.
$>$ On each 'food card', place a cottonball with some honey poured on it, a slice of meat, and a sweet biscuit.
$>$ At three locations, a stationery iPad on a tripod will be ready to film the duration of the experiment.
$>$ Note the time that each of the experiments began and place a clock within view of the iPad as it is filming. Place the food card in view of the iPad screen. Be sure to check that the iPad is actually recording the results!
> Make predictions for the following questions for investigation:
-Which of the stations will bring more ants (concrete, open ground, grassed area)? Give reasons

	-Which of the foodstuffs will attract more ants? -Will there be more than one type of ant attracted to the food card?
Natives vs Ferals	This is a game to explore the balance of nature. Students will be given a coloured bib to wear, and 4 rubber wristbands (2 blue, 2 red). The colour of their bib will determine who they are in the ecosystem: -white = cockatoo (Omnivore) -black = wallaby (Herbivore) -brown = kangaroo (Herbivore) -grey = possum (Omnivore) -red = fox (Carnivore and introduced species) -orange = feral cat (Carnivore and introduced species) The 2 red wristbands represent $2 x$ 'lives' in the game. The $2 x$ blue wristbands are water. Every species must drink at least twice in the game, to allow them to keep going. There will be a set 'waterhole' where animals will take off one blue wrist band to indicate they have drunk at the waterhole. No animal left at the end of the game must still be wearing a blue wristband. When the whistle sounds, each animal will run to avoid being prey. Possums and cockatoos will eat grasshoppers. Herbivores will eat grass. Foxes will attempt to eat any other animal. The balance will change as 'lives' are taken by the foxes. Once animals have lost two lives they then change their bib colour and become a fox; the shift will happen as fox numbers increase and native species decrease. Variable changes! The game can change in an instant. At times, the teacher will advise that there have been some different problems arising in this ecosystem. Some of these problems might be: -Sudden fire, flood or drought. -Drying up of the water hole and -Disease decimation of particular species -New species introduced - herbivore competing for food At the end of the game, discuss the following: -How difficult was it to get water without being caught? -What happened to native species once fox numbers increased? -What were perceived problems when additional competitors were introduced? -Was the current balance of nature here sustainable? -What does the future look like?

Observing plant features

Observing animal features - Insect Hotel

 and Water bug survey

By Wamedu - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=30016616
$>$ Go on a 'nature walk 'and look for different flowers and seeds that are around the area. Collect some different samples and place them in a ziplock bag. Discussion - are all flowering plants and seeds available for harvest at all times? What part do seasons and location play in their abundance? View the native mistletoe - 'Snotty Gobble' and discuss the parasitic origins and germination of seeds.
$>$ Move to the classrooms, where induction on the correct use of microscopes will take place.
$>$ Look at the specimens under the microscope. What parts of the flower or seed can you identify?
$>$ Under instruction, peel away parts of a flower to reveal the reproductive parts. Identify male and female parts. Modelling the correct names for each part, students translate their knowledge of each part with differing types of flowers.
\rightarrow Draw a 'cross section' of a flower. Label petals, anther, stigma, filament, style, ovule, ovary and stem.
$>$ Smells (good and bad), windswept, carried in water, transport via insects, animals and humans, animal droppings, bursting, aerodynamics... There are many ways that plants cleverly disperse seeds for survival. The teacher will show one student a card, giving illustration and description of one way that seeds are dispersed. Playing 'charades', the student will try to re-enact this method of dispersal for others to guess how he/she was dispersed for germination.
\rightarrow Observe a variety of seeds under the microscope. How are they similar? How are they different? Carefully peel away the seed casing and look inside the seeds under the microscope. Identify the casing, food storage and embryo. Compare the insides of many different seeds.
$>$ Observe the 'insect hotel'. Induct students on safety aspects when observing insects which might sting or bite. An insect hotel is a manmade structure created from natural materials intended to provide shelter for insects. They can come in a variety of shapes and sizes depending on the specific purpose or specific insect it is catered to. Most consist of several different sections that provide insects with nesting facilities - particularly during winter, offering shelter or refuge for many types of insects. Many insect hotels are used as nest sites by insects including solitary bees and solitary wasps. These insects drag prey to the nest where an egg is deposited. Other insects hotels are specifically designed to allow the insects to hibernate, notable examples include ladybirds (ladybugs) and butterflies. Insects hotels are also popular amongst gardeners and fruit and vegetable growers due to encouraging insect pollination.
$>$ Observing ants and bees as pollinators and seed dispersers has its own dangers! To observe other minibeast invertebrates, the next stage of this program will incorporate dip netting to catch differing specimens for observation under microscopes.
$>$ Outline rules for safe transport of dip nets to dam site - (carrying nets vertical to body, not dragging net on ground during walk etc).
$>$ Once at dam site, safe entrance to dam via slow 'side-steps' modelled. Students also shown effective methods for using dip nets and collecting aquatic minibeasts. Students shown correct means to extract captured minibeasts from the small and large dip nets to a bucket.
$>$ Students observe external features of the aquatic minibeasts whilst collecting specimens.
$>$ Students will use a StreamWatch Water Bug identification chart to identify and name the aquatic
> Students will identify the immature aquatic minibeasts as nymphs/larvae/pupa of a particular species.
> Students will identify parts of the minibeast using appropriate names - eg head, thorax, abdomen, wings, legs, segments etc.
> Students will use correct terminology to describe the particular view - anterior, lateral, dorsal, posterior.
$>$ Data will be collated as a group - students tally the number of different 'aquatic bugs' identified and named on an accompanying worksheet. The numbers of each of the aquatic animals will be totalled. From the results, students must analyse and evaluate the general quality of the dam water, based on the number of sensitive and tolerant bugs observed in this sample. (A higher number of sensitive bugs present will correlate with more superior water quality.)

School of Ants results - (school follow-up)

$>$ The best way to see the results of an experiment is to make a graph. The kind of graph you make depends on the question you want to answer and what kind of information you have gathered on your results. To find out what kind of food ants like best, for example, we would have to compare the data from two or more kinds of food. Suppose we performed the experiment described in the lesson plan below, and gathered the following data.
$>$ We can now make many different kinds of graphs. A line graph (shown below) is good for looking at trends over time. While this might help us answer the question of when ants are most active in foraging, it is not the best type of graph to use to answer the question of what kind of foods ants like most.

$>$ To answer our question and make quick comparisons between the results of each food type, the best sort of graph to use would be a bar graph. To create a bar graph, we must first find the average for each food type. Averages can be used by scientists to see trends when multiple values are collected. In our example, we counted the number of ants present at different times for each of the three types of food. To get the average number of ants present for each food type, we would do the following..
Food A site 1+ Food A site 2+ Food A site 3=Total ants attracted to Food A. Average total by dividing by 3.
$>$ Once we have the averages for all three food types, we can make a bar graph. By looking at the height of the bars, we can quickly see which food type ants like best. An example is seen below.

SUGGESTED POST - VISIT ACTIVITIES and RESOURCES

To further explore activities relating to relationships between living things -

Teaching/learning guiding inquiry questions

- How can relationships between living organisms be mutually beneficial?
- How can relationships between living organisms be harmful?
- How do organisms protect themselves in order to survive?

Lesson Sequence

Symbiotic Relationships - The Flower and Pollinator

1. Continuing exploration of pollinators - 'Flower Power' - Friends or Foes? (Primary Connections)

Session 3 of the program will explore the part of animals in the pollination process. Pose question 'How do flowers attract pollinators?' Review KWL chart and list any new responses on KWL chart.

Introduce resource sheet 6 'Blooming Flowers', and discuss the layout of the table - What are the features and purpose of this table? Focus on key words 'colour' and 'scent'. Why are these important physical attributes of flowers that need pollination?

Find out about the 'Corpse flower' of Indonesia.

Corpse Flower - By Credits: US Botanic Garden. - http://www.usbg.gov/your-visit/Titan-Day1.cfmhttp://www.usbg.gov/images/july23at745am Ig.jpg, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3107340

Resources

Primary Connections - 'Friends or Foes?’

Resource sheet 6 - Blooming Flowers

Watch a video about this special plant
https://www.youtube.com/watch?v=Lk8kEMaRN3g
2. The Bee's Knees - Literacy focus - completing a labelled diagram. Watch bees pollinating plants on YouTube. Discuss that some flowers need pollen from another plant (cross-pollinate), whilst some are able to selfpollinate. Which parts of the bee's body make it suited to pollination? Review parts of an invertebrate from the REEC program. Complete the diagram on p 24 (resource sheet 4) in Primary Connections -'Friends or Foes?'
3. Travelling Seeds Procedure - Review what was learned about seed dispersal at the REEC, via the 'charades' game. Watch a great video that shows methods of seed dispersal by a variety of plants. 'How Plants Disperse Seeds' - https://www.youtube.com/watch?v=rhp5k5ptSx0
-Complete the 'Travelling Seeds Procedure' activity from Primary Connections 'Friends or Foes?' pp 54-55 (Resource sheet 11)
-Review the seed dispersal used by the Australian Mistletoe, known to Wiradjuri People as 'Snotty Gobble'. It is a parasitic organism and begins life attached to a host plant. Find out more about the uses of parasitic plants in Aboriginal Bush Tucker .

4. Survival of the Fittest?

Introduce the concept of a food chain. Find google images to illustrate some basic food chains. Students should draw their own food chains, labelling each organism in appropriate sequence. Introduce terms producer, consumer. Explain that all food sources originate from plants and all plants gain energy from the sun. It is this reason that the sun appears at the start of every food chain. Decomposers should be the end of a food chain. Find examples that show decomposers in the food chain.

- How do we move from a food chain to a food web? Discuss interrelationships between animals and plants and view some example illustrations on Google Images.
- Have students devise their own food web. Discuss the types of plants and animals that might be found in differing ecosystems - eg marine, grassland, tropical rainforest, rivers, deserts etc.
- What behaviours or physical attributes have animals and plants evolved over time in order to keep consistent numbers of species - eg nocturnal, diurnal, body shape or functions. Choose one animal and one plant that are not 'at the top of the food chain'. Write an information report on your chosen organisms.

http://bushtuckerrecipes.com/bush_food/parasite/

-Bloodwood Apple

-Australian Mistletoe
-Tree Orchid

Google Images - Food chain

Google Images - Food Web

To further explore Citizen Science Options

1. School Of Ants -
 http://www.schoolofants.net.au/

This is a 'Citizen Science' driven study, of the ants in a particular area. 'Everyday citizens' are currently contributing to international ant research all over the world. Data is used to determine diversity, distribution and diet preferences of Australia's dominant ground foraging ants in urban areas.

Ants play important roles as waste and pest managers, soil engineers and nutrient recyclers in our cities and towns. Get to know the species that are helping you.

Engaging in and contributing to the science, collecting data and tracking ants, Australian citizens and school students can help answer big ecological questions we all we as their own burning questions, and broaden their world to insects, the most abundant creatures in the world, and those we could not live without.

Data relating to ant collection is housed centrally at the 'Atlas of Living Australia'. https://www.ala.org.au/ and current occurrence records are found at
http://biocache.ala.org.au/occurrences/search?q=data_resource_uid:dr421 8\#tab mapView

NB ${ }^{* * * *}$ Australian School of Ants is currently not open for new collections. However, this website houses some great resources for teachers. Here you will find literacy, numeracy, scientific and creative activities all ready for download. http://www.schoolofants.net.au/for-teachers/

2. QuestaGame - Free App for iOS and Android

QuestaGame takes you outdoors - to your backyard, a local park, a hiking trail, anywhere - for you to discover, learn about, and help monitor biodiversity. Join quests and compete with other players to photograph animals and plants in the wild and ultimately help create a sustainable future.

The game includes all species in your country, using national and global databases.
As part of the game, you will join quests, earn gold, buy equipment, gain levels, challenge other players, move up the leader board and become one of the great adventurers of all time. As you move up the levels, the more fun and interesting the game becomes.

All sightings are geo-tagged with location, date, time and are easily shared with national and global databases - so you can not only map your conquests, but also help scientists, researchers, planners and others work to protect Australia's biodiversity while you play. Sightings that are recorded through Questagame, once verified, are uploaded into the Atlas of Living Australia (the ALA). The photographs you submit with sightings are important because they allow scientists to verify what you saw, an important quality control if they want to use your record as part of their research. The ALA is important as it's Australia's repository for information about biodiversity. Scientists in universities, museums, government departments and industry all use the ALA to store and access information about plants, animals, fungi and micro-organisms.

There are lots of ways to play, depending on what you find fun; you can earn rewards for simply spotting and recording wildlife, take on quests to find particular species, or compete against other QuestaGame players in head-to-head challenges. Over time, the game keeps a record of all the species you've recorded, and where you recorded them. One class in your school could play against another!

To watch a short video on how this program actually works, see https://questagame.com/video-1/

To register to play, download the app at the itunes or Google Play Store.

To enrol as a school/ organisation or group (and form your own 'clan'), go to https://questagame.com/enrol/

Evaluation:

Pre - Visit Activities

